Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii.

نویسندگان

  • Rahul Tevatia
  • Yaşar Demirel
  • Paul Blum
چکیده

This study focuses on the cell growth and the neutral lipid production modeling of Chlamydomonas reinhardtii in terms of different ammonium concentrations. Autotrophy was maintained during growth in a double walled bioreactor, using Tris Phosphate (TP medium) with only CO(2) and NH(4)Cl as sole sources of carbon and nitrogen, respectively. Nitrogen depletion results in an increase in neutral lipid production with an indirect effect on the growth of algal cells. Modified Baranyi-Roberts and logistic equations were used to describe the cell growth whereas Luedeking-Piret equation was used for neutral lipid production kinetics. Sensitivity analysis shows that the model equations satisfactorily predict the cell growth and lipid production. Based on the mathematical model predictions, growing algal cells in higher ammonium containing medium initially and switching to low ammonium containing medium in a later stage may result in elevated amounts of lipid production, which may be used for scale up and commercialization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A

Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD st...

متن کامل

Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.

Biodiesel production from microalgae is a promising approach for energy production; however, high cost of its process limits the use of microalgal biodiesel. Increasing the levels of triacylglycerol (TAG) levels, which is used as a biodiesel feedstock, in microalgae has been achieved mainly by nitrogen starvation. In this study, we compared effects of sulfur (S) and nitrogen (N) starvation on T...

متن کامل

Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii

Background Individual nutrient depletion is widely used to induce lipid accumulation in microalgae, which also causes cell growth inhibition and decreases the total biomass. Thus, improving the lipid accumulation without biomass loss in the nutrient deficiency cells becomes a potential cost-effective treatment for cheaper biofuels. Methods In this study, the effects of different nutritional c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2012